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We apply periodic-orbit theory to calculate the integrated density of states N�k� of the quantum mechanical
eigenvalues from the periodic orbits of pseudointegrable polygon and barrier billiards. We show that the results
agree so well with the density of states obtained from numerical solutions of the Schrödinger equation that
about the first 100 eigenvalues can be obtained directly from the periodic-orbit calculations with good
accuracy.
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The motion of a classical particle in a billiard system can
show regular, chaotic, or intermediate behavior, depending
on the billiard geometry. A potential well of the same geom-
etry as the corresponding classical billiard—a quantum
billiard—reflects this behavior in the properties of its eigen-
values and eigenfunctions. A hallmark in the theory of cha-
otic systems is Gutzwiller’s trace formula �1,2�. It expresses
the density of quantum mechanical eigenstates g�k� semiclas-
sically by a weighted sum over all classical periodic orbits i
of lengths �i and thus represents an intrinsic link between the
classical and the quantum mechanical properties of a given
system. Since the implementation of Gutzwiller’s trace for-
mula, periodic-orbit theory has been a subject of permanent
interest �for a recent review see �3��. However, in chaotic
systems, the formula cannot be easily applied since the num-
ber N��� of periodic orbits with lengths smaller than a given
value � increases exponentially with �, leading to a diver-
gence of the trace formula. Therefore, the practical applica-
tion of the trace formula up to now has been very limited and
in most cases only reproduces the smoothed density of states
and about the 20–40 lowest individual eigenvalues �4–6�.
Only for the special case of the hyperbola billiard, where
after a suitable rearrangement of the orbits, most contribu-
tions were made to cancel, have about 150 eigenvalues been
reproduced �7�.

In this paper, we concentrate on pseudointegrable billiards
�8,9�, whose spectral properties such as, e.g., the level statis-
tics have been found intermediate between chaotic and inte-
grable billiards �10–13�. Systems with rough boundaries may
have chaotic or pseudointegrable classical dynamics, so that
the theoretical understanding of pseudointegrable systems is
as important as that of chaotic systems. One prominent ap-
plication of quantum billiards is, e.g., the band gap of An-
dreev billiards, where the density of states is of major impor-
tance and where pseudointegrable billiards behave similarly
to chaotic billiards �14�. Formulas equivalent to Gutzwiller’s
trace formula have also been established for regular �15� and
for pseudointegrable billiards �8�. In these billiards, the num-
ber of periodic orbits smaller than � only increases as N���
��2 �16–18�, which diminishes the divergence problems. In
this paper, we will show how the divergence problems can be
overcome in these billiards and how the density of states and
about the 100 lower eigenvalues can be calculated by
periodic-orbit theory.

Figure 1 shows some pseudointegrable geometries consid-
ered in this work together with some periodic orbits.
Whereas rectangular systems are integrable, i.e., the motion
of a particle in a rectangular billiard shows regular classical
dynamics and the equations of motion can be integrated,
pseudointegrable billiards are polygons with a certain num-
ber of rational angles �i=ni� /mi, with ni ,mi�N and at least
one ni�1. Also barrier billiards �19� belong to this class �see
Fig. 1�d��, as a barrier can be considered as part of the
boundary with an inner angle of 2�. Pseudointegrable bil-
liards are not integrable due to singularites arising at the
salient corners and are classified by their genus number

FIG. 1. Shapes of the pseudointegrable billiards considered in
this work. �a�, �b� L-shaped billiards �polygon billiards of genus
number G=2�, �c� a polygon billiard of G=3, and �d� the barrier
billiard �G=2�, which is calculated for different heights h of the
barrier. One periodic orbit for each geometry is also shown �dashed
lines�. In �b� the different segments are shown that can be trans-
versed by the periodic orbits.
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G = 1 +
M

2 �
i=1

J
ni − 1

mi
. �1�

Here, J is the number of angles and M is the least common
multiple of the mi. In the geometries considered here, it is
easy to see that every angle of value 3� /2 or 2� increases G
by a value of 1, whereas the angles of � /2 do not contribute.

We are interested in the density of states g�k�. It is well
known that in differential form g�k� reads

g�k� = g0�k� + gosc�k� , �2�

where k2�2mE /�2 and m is the mass of the quantum me-
chanical particle in the potential well. g0�k� is a smooth term
that can be obtained via the well-known Weyl formula �20�
from the geometrical properties of the system. It does not
require the knowledge of the individual orbits. Hence, the
calculation of g�k� is reduced to the oscillating part gosc�k�
that is �for the billiards considered here� connected to the
lengths and the areas of the periodic orbits. In both integrable
and pseudointegrable systems, the periodic orbits form fami-
lies of fixed lengths �i, which means that the starting point of
an orbit can be shifted in at least one direction along the
boundary without changing its length �see Fig. 1�. Accord-
ingly, the trajectories of all orbit families cover a finite area
Ai in phase space, where the index i counts the different
families. Gutzwiller’s trace formula has also been extended
to pseudointegrable billiards �8,18�. For the billiards consid-
ered here, where all orbits have an even number of reflec-
tions at the boundary walls, the boundary conditions do not
play a role and the formula reads

gosc�k� =� k

2�3�
i

Ai

�i
1/2 cos	k�i −

�

4

 �3�

and applies also for integrable billiards. Second-order contri-
butions coming, e.g., from diffractive orbits have been ne-
glected and the sum over i is carried out over all primitive
�nonrepeated� orbit families and over its repetitions with
multiple lengths. Since the boundary conditions do not enter
into Eq. �3�, we concentrate in the following on Dirichlet
boundary conditions.

Even though the number of orbits N��� below a given
length � increases only quadratically with �, one can easily
show that also the trace formula for pseudointegrable sys-
tems, Eq. �3�, diverges and therefore could not be used so far
to calculate the density of states. However, since the diver-
gence is weak, we can use a simple trick to achieve conver-
gence, namely, by considering the fluctuations of the inte-
grated density of states,

Nosc�k� =� gosc�k�dk

=
1

�2�3�
i

Ai�� k

2�i
3 �sin��ik� − cos��ik��

+
��

2�i
2
FrC	�2�ik

�

 − FrS	�2�ik

�

�� , �4�

where FrS�x� and FrC�x� are the Fresnel sine and cosine
integrals, respectively, which can be evaluated numerically.
Replacing the sum over i by an integral over g���d� and
introducing the orbit density g���=dN��� /d���, one can
verify easily that the factors of �i

−3/2 and �i
−2 ensure the con-

vergence of Eq. �4�.
We first test the formula on the rectangular billiard where

both the orbits and the quantum mechanical eigenvalues k�i,�j

2

are known exactly, k�i,�j

2 =�2��i
2 /Lx

2+� j
2 /Ly

2� with positive in-
tegers �i and � j, and side lengths Lx and Ly of the rectangle.
The orbit lengths are ��i,�j

=2���iLx�2+ �� jLy�2�1/2 and the ar-
eas are Ai=2A for the neutral orbit families �the simplest
orbit families that bounce between two parallel walls �21��
and 4A for all other families, where A is the geometrical area
of the system. In Figs. 2�a� and 2�b� we compare the inte-
grated density of states NPO�k�=N0�k�+Nosc�k� �straight
lines� calculated from Eq. �4� with the corresponding density
of states NEV�k� �circles�, which has been obtained from the
exact eigenvalues. N0�k� is taken from Weyl’s formula �for
Dirichlet boundary conditions�,

N0�k� =
A

4�
k2 −

�

4�
k +

1

24�
i
	 �

�i
−

�i

�

 , �5�

where A is the area, � is the boundary length of the billiard,
and the sum runs over all corners of angles �i. One can see
in Fig. 2 that NPO�k� gives the expected staircase function
and the agreement to NEV�k� is excellent. As shown in the
upper curve of Fig. 2�b�, it even allows to obtain the eigen-
values directly from the steps in NPO�k�. Each eigenvalue is

FIG. 2. �a�, �b� Density of states NPO�k� calculated from the
periodic orbits �solid lines� and NEV�k� calculated from the exact
eigenvalues �circles� of a rectangular system of side lengths Lx

=101 and Ly =198. In �b�, the upper curve compares the steps in
NPO�k� to the eigenvalues. In the lower curves �shifted down by a
value of 5�, the areas of the orbits are disturbed by errors of up to
0.1% and it can be seen that the steps in NPO�k� �dotted line� are
strongly disturbed already by these small error bars.
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positioned at one of the steps of NPO�k�, which we verified
for the first 1500 eigenvalues �until k2=1�.

In pseudointegrable billiards, the areas are different for
the different families and normally much smaller than in in-
tegrable billiards, while the number of periodic orbits is
larger. In Fig. 1�b�, it is demonstrated how the periodic orbits
can be labeled according to their numbers of transversals of
the different segments: the system has two x and two y seg-
ments and the orbit shown here can be labeled as �2,6,2,0�,
where the numbers design the number of transversals of the
segments x1, x2, y1, and y2 �see also Ref. �18��. The orbit
length and angle can be calculated from this information,
whereas the area has to be calculated numerically. However,
unfortunately not all combinations of integer transversals ex-
ist in the pseudointegrable systems, because many hypotheti-
cal orbits are pruned by the shielding of the corners. So it can
be seen easily in Fig. 1�b� that an orbit �2,0,2,0� would not be
possible in this geometry �however, this orbit exists in the
geometry of Fig. 1�a��.

Even though the numerical calculations can be done in
high precision for up to about 50 000 orbits in reasonable
computation time �22�, we first want to investigate the sta-
bility of the results against numerical errors. To this end, we
compared for the pseudointegrable billiards the orbits found
in forward and backward directions. The maximum errors of
the areas of the first 40 000 periodic orbits �about 300 reflec-
tions at the system walls including repetitions� are around
0.1% and we found no hints that orbits might be lost. Ac-
cordingly, we have first tested the robustness of the results by
disturbing the orbits of the rectangular system by errors
taken from a narrow Gaussian distribution of �=0.05 and a
maximum error of 0.1% �see Fig. 2�b� shifted down by a
value of 5 in the lower curve �dotted line��. One can see that
on the average, NPO�k� still agrees very well with NEV�k�, but
that the shape of the staircase is smeared out already by these
quite small errors, so that the eigenvalues can no longer be
determined from the steps in NPO�k�. The loss of about 1% of
the orbits �as well as their repetitions� would be less disturb-
ing and would only lead to very slight deviations in the step
function. We also checked if the number of calculated orbits
is large enough and found that for all considered systems, the
results are stable beyond the first 104 orbits.

Finally, we turn to the pseudointegrable billiards. As be-
fore, we apply Eq. �4� to obtain the density of states NPO�k�
from periodic-orbit calculations. For comparison with the
quantum mechanical eigenvalues, we solve the Schrödinger
equation for the potential wells of Fig. 1 in its discretized
version,

�
i�,j��neighbors�

��n�i�, j�� − �n�i, j�� = − 	 kn

�

2

�n�i, j� , �6�

where the indices �i , j� refer to points of a square lattice with
� lattice points per unit length. The sum over �i� , j�� runs
over all nearest neighbors of �i , j�. Equation �6� depends on
the usual Schrödinger equation 	�n�i , j�=−kn

2�n�i , j� by a
second-order Taylor expansion of the left-hand side up to the
quadratic term. The errors due to the discretization are the
higher orders of � and thus decrease with increasing �, while

the eigenvalues are transformed via kn
2→ �kn /��2. We used a

resolution of �=4, where the errors arising from the discreti-
zation �as calculated for the rectangle� are smaller than
0.03% for the first 100 eigenvalues. Equation �6� describes a
matrix problem. We diagonalized the matrix by the Lanczos
algorithm, yielding the numerical Lanczos eigenvalues kL

2

and the corresponding density of states NEV,L�k�. In Fig. 3,
we compare for the polygon billiards of Figs. 1�a�–1�c�
NPO�k� with NEV,L�k�. First, in Fig. 3�a�, we show a larger
part of the energy spectrum, where we can see that both
NPO�k� �straight lines� and NEV,L�k� �symbols� agree again
very well. Even though the steps in NPO�k� are smeared out
by the numerical inaccurencies as described above, we can
use them to obtain the individual eigenvalues from NPO�k�.
To this end, we fitted NPO�k� by a least squares fit to a step
function with constant integer values of the step heights. The
positions ki

2 of the steps were chosen by minimizing the qua-
dratic deviation to NPO�k�. The step functions obtained this
way, Nfit

PO�k�, are shown in Fig. 3�b� �solid lines�. We can see
that indeed, for about the first 100 eigenvalues, the agree-
ment of the Lanczos eigenvalues with this fitted step function
Nfit

PO�k� is quite good. Nearly all eigenvalues are located right
at the steps of Nfit

PO�k�, and we can obtain at least the first 100
eigenvalues kPO

2 by periodic-orbit theory. In Table I, we show
as an example the 91st to the 100th eigenvalues. We calcu-
lated the number Nm of mismatches among the first 100 lev-
els, i.e., the number of cases where the ith periodic-orbit
eigenvalue lies closer to the �i+1�th or �i−1�th Lanczos
value than to the ith one. Nm is also given in the table and
lies around 20%. Naturally, the mismatches occur at energies
where the level distance is particularly small and Nm is there-

FIG. 3. �a�, �b� Density of states NPO�k� calculated from the
periodic orbits �solid lines� and NEV,L�k� from the Lanczos eigen-
values for the L-shaped systems of Figs. 1�a� �circles� and 1�b�
�squares� and the system of genus number G=3 of Fig. 1�c� �dia-
monds�. In �b�, the fitted step function of Nfit

PO�k� is compared to the
Lanczos eigenvalues. For a better overview the data of the geom-
etries of Figs. 1�a� and 1�b� have been shifted upward by values of
150 in �a� and by 25 in �b�.
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fore highest for the system of Fig. 1�a�, where the density of
states increases fastest and the level distances are thus small-
est.

As a last example, we consider the barrier billiard of Fig.
1�d� for three different heights of the barrier, h=10, 50, and
h=100. In this case, the discretization on a lattice is a cruder
approximation than before, since the barriers which should
be of thickness zero always occupy one grid point. In Fig. 4,
we can see that at least for the systems with barrier heights
h=10 and 50, the agreement between the periodic-orbit and
the Lanczos results is again very good with mismatches even
below 20% �see Table II�. Only for the billiard with the larg-
est barrier height are the mismatches larger, which is, how-

ever, most probably due to the discretization procedure and
not to the periodic-orbit calculations. A comparison to the
eigenvalues calculated by some other procedures will be in-
teresting.

Finally, we want to compare our results to some other
methods that were used in the past to determine eigenvalues
of systems with chaotic classical dynamics by periodic-orbit
theory. The first method used, e.g., in �5� is a “Gaussian
smearing” of g�k�. This means that convergence of the trace
formula can be achieved by multiplying each term of Eq. �3�
with the additional factor of exp�−li

2
2 /2� �where 
 must be
small�. As a consequence, the � peaks of g�k� are trans-
formed into Gaussian functions of shapes �exp�−k2 / �2
2��.

TABLE I. Table of the 91st to the 100th eigenvalues kPO
2 calculated by the trace formula compared to kL

2 calculated by the Lanczos
algorithm for polygonal pseudointegrable systems. Nm is the number of mismatches during the first 100 values, i.e., the number of cases
where the ith periodic-orbit eigenvalue lies closer to the �i+1�th or �i−1�th Lanczos value than to the ith one.

n

Fig. 1�a� Fig. 1�b� Fig. 1�c�

kPO
2 kL

2 kPO
2 kL

2 kPO
2 kL

2

91 0.0649 0.0651 0.0948 0.0949 0.0975 0.0978

92 0.0650 0.0655 0.0959 0.0960 0.0979 0.0984

93 0.0658 0.0661 0.0971 0.0968 0.0981 0.0990

94 0.0664 0.0662 0.0977 0.0977 0.0990 0.0996

95 0.0668 0.0675 0.0979 0.0982 0.0999 0.0998

96 0.0680 0.0680 0.0985 0.0988 0.1008 0.1007

97 0.0689 0.0688 0.0997 0.0999 0.1017 0.1019

98 0.0701 0.0697 0.1001 0.1004 0.1022 0.1024

99 0.0713 0.0713 0.1008 0.1010 0.1038 0.1045

100 0.0716 0.0716 0.1013 0.1015 0.1042 0.1047

Nm 24 15 21

FIG. 4. �a�, �b� Density of
states NPO�k� calculated from the
periodic orbits �solid lines� and
NEV,L�k� from the Lanczos eigen-
values for the barrier billiards
with barrier heights h=10 �dia-
monds�, 50 �squares�, and 100
�circles�. In �b�, the fitted step
function of Nfit

PO�k� is compared to
the Lanczos eigenvalues. For a
better overview the data in both
�a� and �b� have been shifted up-
ward by values of 5 �h=50� and
10 �h=10�.
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We tested this method also on our systems and found that it
works very well for the integrable rectangular systems, but
not for the pseudointegrable systems. As in our method, the
small errors in the orbit areas lead to a large noise that is still
increased by the Gaussian smearing. Contrary to our method,
where we were able to apply a clearly defined fit procedure
to eliminate the noise from the steps in N�k�, it is not pos-
sible to find the Gaussian functions in g�k� by a simple rule.
Another method used in �7� calculates the eigenvalues from
the zeros of the so-called dynamical � function that contains
all orbit information. In very special cases, where every large
primitive orbit can be decomposed into series of a few small

orbits, the dynamical � function can be calculated very eas-
ily. However, this condition is only satisfied in rare cases and
demands as minimal conditions that the orbits can be labeled
according to fundamental building blocks, where each com-
bination of the blocks exists. We have seen that in the case of
pseudointegrable billiards, the periodic orbits appear in a
very unsystematic way and many hypothetical orbits are
pruned, so that we think that this method is not helpful in our
case.

In summary, we have shown how the convergence prob-
lems of the trace formula can be overcome in systems where
the number of periodic orbits below a given length � in-
creases at most quadratically with �, e.g., for integrable and
for pseudointegrable billiards. We have shown that the inte-
grated density of states can be reproduced in very good ac-
curacy for several hundred eigenvalues. The calculations are
very sensitive to numerical errors, so that already error bars
of about 0.1% destroy the shape of the step function of
NPO�k� such that the steps are smeared out. In integrable
billiards, where the orbits are known exactly, the eigenvalues
can be found directly from the steps in NPO�k� �which we
tested for the first 1500 eigenvalues�. In pseudointegrable
billiards, even if the curves follow all fluctuations of the
spectra very well, a fit technique has to be used in order to
find the first 100 individual eigenvalues. The results are very
promising and show that the quantum mechanical density of
states can indeed be gained, using as input solely the classi-
cal periodic orbits of the pseudointegrable billiards. It will be
very interesting to apply this procedure to real mesoscopic
structures, where the change of the density of states as re-
sponse to a change in geometry is of great importance.

We would like to thank A. Bunde for a careful reading of
the manuscript and valuable remarks.
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TABLE II. Table of the 91st to the 100th eigenvalues kPO
2 cal-

culated by the trace formula compared to kL
2 calculated by the Lanc-

zos algorithm for the pseudointegrable barrier systems. Nm is the
number of mismatches during the first 100 values.

n

Fig. 1�d�, h=10 Fig. 1�d�, h=50 Fig. 1�d�, h=100

kPO
2 kL

2 kPO
2 kL

2 kPO
2 kL

2

91 0.0647 0.0649 0.0649 0.0654 0.0662 0.0663

92 0.0649 0.0653 0.0656 0.0656 0.0674 0.0669

93 0.0654 0.0654 0.0658 0.0660 0.0678 0.0683

94 0.0655 0.0657 0.0675 0.0672 0.0688 0.0693

95 0.0663 0.0661 0.0678 0.0679 0.0692 0.0697

96 0.0672 0.0673 0.0680 0.0683 0.0698 0.0704

97 0.0678 0.0678 0.0692 0.0696 0.0708 0.0709

98 0.0682 0.0683 0.0698 0.0698 0.0716 0.0712

99 0.0693 0.0692 0.0706 0.0713 0.0723 0.0727

100 0.0708 0.0710 0.0722 0.0724 0.0726 0.0730

Nm 16 18 29
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